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The parametric excitation of internal two-dimensional waves in a viscous, continuously stratified fluid completely falling a 
rectangular vessel which performs vertical oscillations is studied. The fluid is assumed to have a low viscosity, which enables ideas 
in boundary-layer theo~ry and the Ktylov-Bogolyubov method of averaging to be used. Approximate formulae are obtained for 
the threshold amplitude of the oscillations of the vessel and the boundaries of the resonance zones, that is, of the quantities 
which determine the cxmditions for parametric oscillations. Copyright © 1996 Elsevier Science Ltd. 

The parametric excitation of internal waves in an ideal stratified fluid in a vessel [1-3] as well as para- 
metric resonance in a viscous, stratified fluid occupying the whole of space [1] have been studied 
previously. The parametric oscillations of a viscous, two-layer fluid in a dosed  vessel of arbitrary shape 
have been investigated in [4]. 

1. I N I T I A L  E Q U A T I O N S  

We will consider the problem of the parametric excitation of internal waves in a viscous, continuously 
stratified, incompressible, heavy fluid, completely filling a closed vessel which executes vertical oscillations 
in accordance with the law: -s  cos D.t, where s is the amplitude and f~ is the frequency of the oscillations. 
A Cartesian system of coordinates (x, z) is introduced which is connected to the vessel and has 
axes which are parallel to the vessel walls. We shall assume that the fluid is exponentially stratified 
along the z axis, that is, its steady-state density is P0 = A exp( -~ ) .  The system of equations which des- 
cribes infinitesimal motions of the fluid under consideration in the (x, z) system of coordinates has the 
form 

-gTav ,,( "-7s~2 ~ ) " 
Oo = - V p -   ,og l + co  ,,tj + OoV,,,, 

div v = 0, O_pp = ogP0 u ~, 020 = 13g = const 
3t g 

(x ,z)~D=(O<x <a)x(O<z <h) 

(1.1) 

where v is the velocity of the fluid particles, p and p are the pressure and density perturbations caused 
by the fluid motion relative to the vessel, v = const is the kinematic viscosity of the fluid, ez is a unit 
vector along the z axis and too is the Vfiis~ilfi-Brunt frequency [5, p. 94]. 

The velocity must be zero on the vessel walls F 

Vlr = 0 (1.2) 

We now introduce a stream function U using the formulae 
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a2U 32U 
u x =~zat ,  v z = axat (a.3) 

Substituting (1.3) into (1.1) and (1.2), we eliminate the pressurep and the density p from (1.1). 
Dimensionless variables are now introduced, taking the characteristic dimension d of domain D as 

the unit of length, and T = 1ROl, where o)1 is the lowest characteristic frequency of the oscillations of 
an ideal stratified fl.uid, as the unit of time. By retaining the previous notation for all of the dimensionless 
quantities, we obtain a problem for the stream function U 

at 2 dz ) Ot L k az )J 

C2 V ET = s~"Z 2 
= , , ~, = 0(I) 
d2col g (1.4) 

3U[ = 0 uIr=°' ~ F  

where n is the normal to the boundary r .  
We further assume that e '~ 1. 

(1.5) 

2. T H E  G E N E R A L  S O L U T I O N  S C H E M E  AND 
Z E R O T H  A P P R O X I M A T I O N  

Problem (1.4), (1.5) is a singularly perturbed problem since it contains a small parameter e for the 
highest derivative. Functions, which are solutions of Eq. (1.4) when e = 0 and satisfy the first boundary 
condition in (1.5), describe the natural oscillations of an ideal stratified fluid and have the form 

u o ( x , z , C , ~ ) = C e x p C ~ - ~ ) W o ( X , Z ) C O S ~ ,  

,orr ,l 
t.D = 0 ~  0 + 

a L\ a / k , T )  T 

Wo(X,Z)=" ~,-'-~-: ~ . T ;  

d c  a v  - - = 0 ,  =co 
dt  dt  

n , m  = 1,2 .... 

Here co is an eigenvalue and w0 is an eigenfunction of the problem 

-0 )  2 Aw o -  w o +to o ~2Wo a---~-~- = o (2.1) 

wolr = 0 (2.2) 

We shall seek an asymptotic solution of problem (1.4), (1.5) in the form of the sum of a regular part 
and a boundary-layer part which only exists close to the sides of the rectangle D 

4 

U = u + Y l-I ~1~ 
l=l 

U ~- U0 + ,~t/I +E2U2  + . . . .  

r l  tl) ~ El-ll l) + e21I~/) 
- . . ' ~  

u k = uk(x ,  z, C, ¥), 

1 = 1 , 2 , 3 , 4  

k=0,1,2. . .  

(2.3) 
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I"I~ i) = l ' l ~ i ) ( ~ i , z , C , w ) ,  i=1,2; k = l . 2  .... 

la~ i) - n~J~(x, ni,c,v), i = 3,4; k = 1,2,.. 

Here, ~x = x/e,  ~.;2 = (a - x) /e ,  r13 = z /e  and 134 = (h - z ) / e  are "extended" variables. 
We require that the boundary-layer functions satisfy the relations 

H(/)I --)0, i=1,2  

rl (.i) --.) o, j=3,4 
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Furthermore, following the idea behind the Krylov-Bogolyubov method, we assume that the amplitude 
of the oscillations C and the rate of change of the phase dw/d t  vary slowly with time depending on the 
magnitude of the amplitude C itself and the phase difference 0 = ¥ - D.t/2. 

Let us put 

d C  e .At (C,O)+e2A2(C,O)+. ."  
dt  

dO = co - ~-- + eB I (C,0) + e2B2 (C,0)+... 
dt 2 

(2.4) 

where A I ( C ,  0), BI(C, 0) are periodic functions of 0 with period 27t which, like the coefficients of 
expansions (2.3), ~re to be determined from problem (1.4), (1.5). 

Taking account of the explicit dependence of the functions u, 17 (0 (l = 1, 2, 3, 4) on ¥ and C, we shall 
have the expansions for the partial derivatives of the function u with respect to t, for example 

au ~u0+ ( ~)u I OU0A 3u0 h~ el.o + ac ' J +  

+ J,,,2 : . ,  +- : 

~u0 ~A' )] +(,._ ta)( aB, + +... 
~. 2 )~, aq O0 aC aO 

32% )+ (2.5) ~--~- B, 

Similar expansions hold for the time derivatives of the boundary-layer functions. 
On substituting expansions (2.3) and (2.5) into Eq. (1.4), we obtain equations for the regular and 

boundary-layer parts separately. On substituting expansions (2.3) into boundary conditions (1.5), we 
obtain relations which connect the boundary-layer and regular terms. Comparing quantities of the same 
order in e in these equations and relations, we obtain a sequence of boundary-value problems from 
which the successive approximations to the solution of problem (1.4), (1.5) are found. 

The problem for the functions II~ 1) which removes the discrepancy introduced by the function u0 
into the second boundary condition of (1.5) on the side x = 0 has the form 

o3~I/2 oqoqi 

an~ '~1 a , , 0 [ ,  n '"  --,0 
(2.6) 

The solution of problem (2.6) is 
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Fill ) C c)w o (~_od~l) lcos(V+ot~l)  sin(¥+otgl)l 
= 2-"d 3x ,-=o exp 

0¢. = [(0} 2 -- (0 2 ) / (2oo)1½ 

We similarly obtain an expression for rI~ 2), which differs from l'I~ 1) in that Ow0/~rl~=0 is replaced by 
-3Wo/axlx=a and ~1 is replaced by ~2. 

The problem for the function II~ 3), which removes the discrepancy introduced by the function u0 
into the second boundary condition of (1.5) on the side z = 0, has the form 

co 3n13) = a2n}3) 
3v ~ 

31-II 3) 3% ; 1-I (3) --) 0 

()1]'~3 "lq3= 0 = -  3Z Iz=0 ~ly-'+~ 

(2.7) 

The solution of problem (2.7) is 

C 3w° z=0 1-I13) - 20 3z exp(-crrl3)[c°s(~-crq3)+sin(w-°Xl3)] 

o = [oo / 21½ 

We similarly obtain that 

r l i4,  _ C 3W 0 exp¢  ~h _ O.114 ] [cos( l i t  _ OTI4 ) + sin(~l# _ 0.114 )] 
20 3z I:=#, t. 2 ) 

Note that the functions rl~ 0 (1 = 1, 2, 3, 4) which remove the discrepancies in the second boundary 
condition of (1.5) on one of the sides of the rectangle D do not introduce discrepancies on the other 
sides in the first boundary condition of (1.5). 

For the components of the velocities of the fluid particles, we shall have from (1.3), up to terms O(e) 

a2,o a2nl 3) 32n~ 4) 32% 32ni ') 321-II 2, 

"o.,. = 3zat ~ i~q33t ~r143t ' uh~ 3x3t a¢,at + 3¢0-----7 

3. F O R M U L A E  FOR THE T H R E S H O L D  A M P L I T U D E  AND 
B O U N D A R I E S  

The problem for the function 

OF THE RESONANCE ZONES 

has the form 

I 3w° x=0 Wlix:°= 2-0~ "~x q-' 

o /o? ) 
I a~o 

W I I ' : "  = 20~ 3x x=a q -  

(3.1) 

(3.2) 



where 
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= 1 ~..ww 0 _ I ~)w,) I q+ 
w,l::o 2-° az z=o q+' Wii'=h 20  0z ,:,, 

q+_ - C(cos~ + sin~), Q=  A I s i n ~ +  C B  I cosy  

V - C[sin 20(sin ~ + sin 3~ ) + cos 20(cos ~ + cos 3~ )] 

~ "z'z'-_ ~)al /)Bi k 2 (~.~,)2 ( h i ) 2  
G - c o s  q o o  - C s in  xli o 0  , - _ _  + - -  

453 

The right-hand side of (3.1) depends on ~ in accordance with the laws sin ~, cos ¥, sin 3~, cos 
3¥, and the right-hand side of (3.2) depends on ~ in accordance with the laws sin % cos ¥. One can 
therefore put 

O2WI / o3~1/2 =-WI (I) _9WI (3) (3.3) 

where W1 (1) depends on ¥ according to the laws sin ~, cos ~, and W1 (3) depends on ~/according to the 
laws sin 3¥, cos 35r. In order to find the functionsAl(C, 0), B I ( C ,  0), we will use a technique similar to 
that employed in [4]. 

We multiply Eq. (3.1) by w0 and Eq. (2.1) by W1. On integrating the resulting relations over the domain 
D and subtracting one from the other, taking account of Green's first formula for the Laplace operator, 
condition (2.2) and formulae (3.3), we obtain 

(0) 2 --O~g) q_ l l  +-~-q+12 + 8c°2~'J " VWt(3)Vwo ds = 
o[ o 

=-2°')(I+ P~9 IQI+ y?~ V#+(I+ pI29 I(°')--~) ) 2k- ~ 4k- )t (3.4) 

11- 0J Ix=0 dz= - -  -2 

¢ w°/21 
ot, az)l~=o t,h ; 2 

a #) = k 2 a  h 1==- I ~ ( V w o ) 2  d x d z  
o o 4 

Equating the coefficients of sin ~/and cos ¥ in (3.4) separately, we obtain a system of differential 
equations for the fimctionsAl(C , 0) and B I ( C  , O) 

A t = - c t + C  + b C  sin 20 - 8C 0~B 0 (3.5) 

B I =-ct_  + b c o s 2 0 + - -  - -  
8 0A~ 
C O0 

where 

@±=L+(~2-02)/l+~2I'-r OC 20 I+ 1 
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b =  ~ ~3 - 1  
4k 2 + 132 ' 4 26o 

Having solved system (3.5), we substitute the functions AI(C ,  0), BI(C, 0) into system (2.4) which 
has been  considered up to O(e2). We have 

dC b 
= -ER+C + E ~ Csin 20 

- -  = m - - - - c o t  +E cos20  
dt 2 - 

(3.6) 

To investigate the stability o f  the trivial solution C = 0, 0 = const, we reduce (3.6) to a l inear system 
using the substitution u = C cos 0, ~ = C sin 0. The  characteristic equation corresponding to this solution 
has the solutions 

k + = - E o ~ + + E  r 2 -  ~ _ -  m - - ~ -  E , r = b / ( 2 ~ - l )  

For  the ampli tude of  the oscillations to increase the expression under  the square roo t  sign must  be 
positive. F rom this, reverting to dimensional  variables, we obtain 

fl_ < f l  < f/+, ~±  - 2o) + 2 A o  + 2(~ 2 - Ix2 )~_ (3.7) 

= sf~m 2 / (2g), Ix = -eo~+¢.01, Am = -Ec~_mj 

where  Ix and Am are the a t tenuat ion factor  and the shift in the f requency of  the oscillations o f  an ideal 
stratified fluid, respectively. 

Parametr ic  amplification o f  the internal waves is possible if the frequency f l  of  the oscillations of  the 
vessel satisfies relat ion (3.7) and the ampli tude s exceeds a certain threshold value s. which is found 
f rom the condition: ~2 = Ixz.. In  the case when f~ ~ 2m, we obtain 

gv'A[(t020 - m 2 )  ~ lj +co/2 ] 

s = ¢.03(20)~[ I +62  I (4k2)]  1 

W h e n  v = 0 and ~ ~ 2o,  formula  (3.7) takes the form 

2 ~  - 2sin 3 / g < ~ < 2co + 2sin 3 / g 

This result is identical to that  obtained earlier [2]. 
This research was carried out  with financial support  f rom the Russian Foundat ion  for Basic Research 

(93-01-17929). 
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